15 research outputs found

    The Shadows of a Cycle Cannot All Be Paths

    Full text link
    A "shadow" of a subset SS of Euclidean space is an orthogonal projection of SS into one of the coordinate hyperplanes. In this paper we show that it is not possible for all three shadows of a cycle (i.e., a simple closed curve) in R3\mathbb R^3 to be paths (i.e., simple open curves). We also show two contrasting results: the three shadows of a path in R3\mathbb R^3 can all be cycles (although not all convex) and, for every d≄1d\geq 1, there exists a dd-sphere embedded in Rd+2\mathbb R^{d+2} whose d+2d+2 shadows have no holes (i.e., they deformation-retract onto a point).Comment: 6 pages, 10 figure

    Mutual visibility by luminous robots without collisions

    Get PDF
    We consider the Mutual Visibility problem for anonymous dimensionless robots with obstructed visibility moving in a plane: starting from distinct locations, the robots must reach, without colliding, a configuration where no three of them are collinear. We study this problem in the luminous robots model, in which each robot has a visible light that can assume colors from a fixed set. Among other results, we prove that Mutual Visibility can be solved in SSynch with 2 colors and in ASynch with 3 colors. If an adversary can interrupt and stop a robot moving to its computed destination, Mutual Visibility is still solvable in SSynch with 3 colors and, if the robots agree on the direction of one axis, also in ASynch. As a byproduct, we provide the first obstructed-visibility solutions to two classical problems for oblivious robots: collision-less convergence to a point (also known as near-gathering) and circle formation

    Population protocols with faulty interactions: The impact of a leader

    Get PDF
    We consider the problem of simulating traditional popula-tion protocols under weaker models of communication, which include one-way interactions (as opposed to two-way interactions) and omission faults (i.e., failure by an agent to read its partner’s state during an inter-action), which in turn may be detectable or undetectable. We focus on the impact of a leader, and we give a complete characterization of the models in which the presence of a unique leader in the system allows the construction of simulators: when simulations are possible, we give explicit protocols; when they are not, we give proofs of impossibility. Specifically, if each agent has only a finite amount of memory, the simulation is pos-sible only if there are no omission faults. If agents have an unbounded amount of memory, the simulation is possible as long as omissions are detectable. If an upper bound on the number of omissions involving the leader is known, the simulation is always possible, except in the one-way model in which one side is unable to detect the interaction

    Oblivious permutations on the plane

    Get PDF
    We consider a distributed system of n identical mobile robots operating in the two dimensional Euclidian plane. As in the previous studies, we consider the robots to be anonymous, oblivious, dis-oriented, and without any communication capabilities, operating based on the Look-Compute-Move model where the next location of a robot depends only on its view of the current configuration. Even in this seemingly weak model, most formation problems which require constructing specific configurations, can be solved quite easily when the robots are fully synchronized with each other. In this paper we introduce and study a new class of problems which, unlike the studied formation problems, cannot always be solved even in the fully synchronous model with atomic and rigid moves. This class of problems requires the robots to permute their locations in the plane. In particular, we are interested in implementing two special types of permutations - permutations without any fixed points and permutations of order n. The former (called Move-All) requires each robot to visit at least two of the initial locations, while the latter (called Visit-All) requires every robot to visit each of the initial locations in a periodic manner. We provide a characterization of the solvability of these problems, showing the main challenges in solving this class of problems for mobile robots. We also provide algorithms for the feasible cases, in particular distinguishing between one-step algorithms (where each configuration must be a permutation of the original configuration) an

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Distributed computing by mobile robots: uniform circle formation

    No full text
    Consider a set of n finite set of simple autonomous mobile robots (asynchronous, no common coordinate system, no identities, no central coordination, no direct communication, no memory of the past, non-rigid, deterministic) initially in distinct locations, moving freely in the plane and able to sense the positions of the other robots. We study the primitive task of the robots arranging themselves on the vertices of a regular n-gon not fixed in advance (Uniform Circle Formation). In the literature, the existing algorithmic contributions are limited to conveniently restricted sets of initial configurations of the robots and to more powerful robots. The question of whether such simple robots could deterministically form a uniform circle has remained open. In this paper, we constructively prove that indeed the Uniform Circle Formation problem is solvable for any initial configuration in which the robots are in distinct locations, without any additional assumption (if two robots are in the same location, the problem is easily seen to be unsolvable). In addition to closing a long-standing problem, the result of this paper also implies that, for pattern formation, asynchrony is not a computational handicap, and that additional powers such as chirality and rigidity are computationally irrelevant

    Line recovery by programmable particles

    No full text
    Shape formation has been recently studied in distributed systems of programmable particles. In this paper we consider the shape recovery problem of restoring the shape when f of the n particles have crashed. We focus on the basic line shape, used as a tool for the construction of more complex configurations. We present a solution to the line recovery problem by the nonfaulty anonymous particles; the solution works regardless of the initial distribution and number f < n4 of faults, of the local orientations of the non-faulty entities, and of the number of non-faulty entities activated in each round (i.e., semi-synchronous adversarial scheduler)

    Mediated population protocols: Leader election and applications

    No full text
    Mediated population protocols are an extension of popula-tion protocols in which communication links, as well as agents, have internal states. We study the leader election problem and some applica-tions in constant-state mediated population protocols. Depending on the power of the adversarial scheduler, our algorithms are either stabilizing or allow the agents to explicitly reach a terminal state. We show how to elect a unique leader if the graph of the possible interactions between agents is complete (as in the traditional popula-tion protocol model) or a tree. Moreover, we prove that a leader can be elected in a complete bipartite graph if and only if the two sides have coprime size. We then describe how to take advantage of the presence of a leader to solve the tasks of token circulation and construction of a shortest-path spanning tree of the network. Finally, we prove that with a leader we can transform any stabilizing protocol into a terminating one that solves the same task
    corecore